Analysis of the spatial and temporal heterogeneity of factors influencing CO2 emissions in China’s construction industry based on the geographically and temporally weighted regression model: Evidence from 30 provinces in China

Author:

Li Tiantian,Gao Haidong,Yu Jing

Abstract

With the rapid economic development in recent years, China has increased its investment in infrastructure construction, and the construction industry has become a significant contributor to China’s carbon dioxide (CO2) emissions. Therefore, carbon emission reduction in the construction industry is crucial to achieving the goal of “carbon peaking and carbon neutrality” as soon as possible. However, few studies have investigated the factors influencing CO2 emissions from the construction industry in terms of spatial and temporal differences. To address this gap, we first improve the calculation method for the construction industry’s life-cycle assessment (LCA). The geographically and temporally weighted regression (GTWR) model is then utilized to provide insight into the spatio-temporal heterogeneity of the various factors influencing CO2 emissions across other regions and times. The results show that: 1) CO2 emissions from the construction industry in China increased rapidly from 576.5 million tons (Mt) in 2004–3,230 Mt in 2012 and then gradually decreased to 1998.51 Mt in 2020; indirect CO2 emissions accounted for more than 90% of the total CO2 emissions after 2008. 2) There is a solid global positive correlation between CO2 emissions from the construction industry in China during most of the time, and the spatial distribution of CO2 emissions shows a northeast-southwest pattern, with the center of gravity gradually shifting from central China to the southwest. 3) Economic output and industrial agglomeration are positive factors for the increase of CO2 emissions from the construction industry; and urbanization level, production efficiency, and energy efficiency are inhibiting factors for the increase of CO2 emissions from the construction industry. But the contribution and trend of each influencing factor differed significantly across time and regions, showing substantial spatial and temporal heterogeneity. Our findings provide a scientific basis for the Chinese government to implement a regional carbon reduction strategy for the construction industry.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3