Seeded phosphorus retention in fixed-bed laboratory columns by the use of apatites

Author:

Delgado-González Laura,Lartiges Bruno,Troesch Stéphane,Proietti Arnaud,Molle Pascal

Abstract

Phosphorus retention in small- and medium-sized wastewater treatment plants is crucial to preventing the eutrophication of downstream catchments. One popular solution in combination with treatment wetlands is the use of reactive filters for phosphorus retention; however, identifying a suitable substrate is not an easy task in this process. Apatites have already proven to be an effective alternative for phosphorus retention, yet more in-depth research is needed. This article uses two natural apatite materials, NA1 and NA2, introduced in four fixed-bed laboratory columns to assess their phosphorus retention capacity. Various inflow conditions are set for the NA1 substrate to evaluate the impact of calcium and biomass development on performance. The substrates show high phosphorus retention (>16.8 g PO4-P/kg for NA1 and >17.5 g PO4-P/kg for NA2) as well as high kinetic rate coefficients (1.45 and 1.70 h−1 for NA1 and NA2, respectively), with performances above 80% for both substrates. The maximum phosphorus retention capacity is not attained at the end of the experiments, despite their long duration (230 days) and the short hydraulic residence times applied (∼2 h), thus suggesting a long-term removal capacity. The NA1 column fed with a calcium-deficient synthetic solution displays just slightly reduced kinetic rates, most likely due to calcite and dolomite dissolution from the media. The column fed with treated wastewater does not reveal any significant reduction in hydraulic conductivity due to biomass development. No loss of permeability due to chemical clogging was observed in the other columns. Scanning electron microscopy indicates that phosphorus retention occurs by the precipitation of amorphous calcium phosphate for both natural apatites, thereby clearly demonstrating the implementation of seeding mechanisms. Such a retention process is sustainable, which suggests it may proceed over even higher retention capacities.

Funder

Agence de l'Eau Rhône Méditerranée Corse

Agence de l'Eau Adour-Garonne

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3