Exploring methane cycling in an arctic lake in Kangerlussuaq Greenland using stable isotopes and 16S rRNA gene sequencing

Author:

Cadieux Sarah B.,Schütte Ursel M. E.,Hemmerich Chris,Powers Sarah,White Jeffrey R.

Abstract

Lakes are currently responsible for a significant amount of total natural methane emission. Microbial oxidation of methane plays a central role in Arctic carbon cycling, potentially reducing methane emissions from lakes, though little is known about methane cycling in the water column of Arctic lakes. We previously detected surprisingly large enrichments of heavy carbon and hydrogen isotopes of methane in three small lakes in Greenland suggesting unusually efficient methanotrophic communities in these Arctic lakes. Using stable isotope and 16S rRNA gene sequencing we determined carbon and hydrogen isotopes and microbial community composition down the water column of Teardrop lake, under open-water conditions. We found that isotopic values of methane in Teardrop lake were again highly enriched 13C and 2H at 4 m depth with −13.2‰ and −27.1‰ values for carbon and hydrogen isotopes, respectively. Methane concentrations slightly increased at the depth interval with isotope enrichment, not typical of classic methanotrophy. Consistent with isotopic enrichment of the heavy isotopes we detected the highest relative abundance of putative methanotrophs, in particular Methylovulum at 4 m. The highest relative abundance of putative methanogens was detected at 3 m as well as at 5 m. At the same depth interval, temperature and oxidation reduction potential also increase, supporting increased microbial activity within the water column. Based on geochemical and microbial observations, we suggest that the methane cycling in Teardrop lake is decoupled from a traditional depth dependent model where the dominant source of methane is in the anoxic sediments. Instead, methane in the water column is likely from a combination of anoxic sediment, littoral transport and oxic methanogenesis in the mid-water column, and recycling of carbon within the water column is leading to extreme isotope enrichments. Thus, understanding linkages between depth-dependent microbial dynamics and methane biogeochemistry are necessary to constrain the sensitivity of the methane cycle to future climate change.

Funder

NASA Astrobiology Institute

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3