Feasibility Analysis Upon Optimal Pollutant Degradation via Compartmental Modeling

Author:

Chen Bor-Yann,Lin Yu-Hsiu,Hsueh Chung-Chuan,Hong Jun-Ming

Abstract

Due to a lack of plausible kinetic modeling for contaminant attenuation, this study first proposed a “bi-exponential disposition” model to demonstrate the feasibility of wide-ranging applications for the biotic and abiotic degradation of pollutant(s). As a consequence of under-determined systems of bisphenol A (BPA) degradation via advanced oxidation processes (AOPs), a previous study proposed asymptotic approximation singular perturbation for kinetic modeling. The present study extended this model to provide the key performance indicator (KPI); namely, the area under the time course (AUC) of pollutant concentrations from time zero to the endpoint (i.e., AUC0tf), quantitatively revealing the most promising strategy for pollutant (bio)degradation. Compared to the typical KPI (percentage of pollutant removal), AUC better illustrated the overall efficiency. Compartmental modeling predicted maximal pollutant mitigation through optimal schemes of operation for global optimization. The feasibility of adopting AUC for system prediction was confirmed in cases of azo and anthraquinone dye biodecolorization and acetaminophen (APAP), glyphosate, and bisphenol A (BPA) degradation. Regarding azo dye biodecolorization, the AUC and SDRmax indicated the need to consider cell concentrations. Compartment kinetics could be used for the serial acclimation of anthraquinone dye removal. Moreover, compartmental assessment upon glyphosate and acetaminophen abiotic degradation was also feasible for further applications. To minimize the AUC for optimal degradation of Ak3k1Bk2C, the maximal forward rate constants k1 and k2 and minimal backward rate constant k3 should be satisfied simultaneously. Thus, this AUC approach might be broadened to demonstrate overall optimization via Pontryagin’s maximum principle.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3