Multiple stressor effects of a heatwave and a herbicide on zooplankton communities: Implications of global climate change

Author:

Roth Sabrina K.,Polazzo Francesco,García-Astillero Ariadna,Cherta Laura,Sobek Anna,Rico Andreu

Abstract

Aquatic ecosystems are exposed to pesticides through various pathways such as spray-drift, agricultural runoff, and chemical spills. Understanding the impact of pesticides on freshwater ecosystems requires not only understanding how pesticides affect aquatic organisms but also knowledge of their interactions with other stressors, such as those related to global climate change. Heatwaves are extended periods of temperature increase relative to the climatological mean. They are increasing in frequency and magnitude and pose an emerging threat to shallow freshwater ecosystems. In this study, we evaluated the single and combined effects of the herbicide terbuthylazine and a simulated heatwave on freshwater zooplankton communities using indoor microcosms. Terbuthylazine was applied at an environmentally relevant concentration (15 µg/L). The heatwave consisted of an increase of 6°C above the control temperature for a period of 7 days. When applied individually, the heatwave increased the total abundance of zooplankton by 3 times. The terbuthylazine exposure led to an indirect effect on the zooplankton community structure, reducing the relative abundance of some taxa. The combination of the heatwave and terbuthylazine had no significant impact on the zooplankton community, indicating additive effects dominated by the herbicide. The interaction between the two stressors increased chlorophyll-a concentrations and apparently changed the structure of the phytoplankton community, which may have benefitted cyanobacteria over green algae. Overall, this study shows that understanding the effects of chemical and non-chemical stressors on aquatic communities remains a challenging task. Further studies should be conducted to improve our mechanistic understanding of multiple stressor interactions at different levels of biological organisation.

Funder

Stockholms Universitet

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3