Effects of polystyrene microplastics on dechlorane plus bioaccumulation in the thick-shell mussel

Author:

Xu Qiuxia,Peng Xijian,Guo Yuanming,Hao Qing,Hou Yanlin,Yang Chenghu

Abstract

The combined pollution of microplastics (MPs) and persistent organic pollutants (POPs) have attracted increasing attention from the international community in recent years. MPs can affect the toxicity, bioenrichment rate and bioavailability of POPs through adsorption and other interactions. Dechlorane Plus (DP) is a chlorinated flame retardant and a typical. DPs used mainly in various polymer materials, such as electrical wire and cable coating. The pollutions of MPs and DPs (syn and anti isomers, syn-DP [s-DP] and anti-DP [a-DP]) are ubiquitously present in the environment. However, the effect of MPs on the bioaccumulation of DP has not been reported. In this study, thick-shell mussels (Mytilus coruscus) were exposed to DPs (10 ng/L, DP10), DPs and polystyrene microplastics (PS) (10 ng/L DP +10 μg/L PS, DP10/PS10; 10 ng/LDP+20 μg/L PS, DP10/PS20) for 28 days to investigate the effect of MPs on DPs enrichment. Thick-shell mussels accumulated DPs in the adductor muscle, gill, and gonad showed an increasing trend with time, but the concentration of DPs in the visceral mass does not show a time-dependent manner. The concentration of DPs in the gonads and gills was significantly affected by the concentration of PS (p < 0.05), but there was no significant correlation between the concentration of DPs and the concentration of PS in the adductor muscle and visceral mass (p > 0.05). Moreover, DPs showed selective enrichment of syn-DP in thick-shell mussel tissues, and there was no significant correlation between this result and PS concentration (p > 0.05). These findings provide a new entry point for studying the interaction between microplastics and persistent organic pollutants in marine organisms.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3