Integration of shapley additive explanations with random forest model for quantitative precipitation estimation of mesoscale convective systems

Author:

He Zheyu,Yang Yuanjian,Fang Runzhuo,Zhou Shaohui,Zhao Wenchuan,Bai Yingjie,Li Junsheng,Wang Bo

Abstract

Mesoscale convective cloud systems have a small horizontal scale and a short lifetime, which brings great challenges to quantitative precipitation estimation (QPE) by satellite remote sensing. Combining machine learning models and geostationary satellite spectral information is an effective method for the QPE of mesoscale convective cloud, while the interpretability of machine learning model outputs remains unclear. In this study, based on Himawari-8 data, high-density automatic weather station observations, and reanalysis data over the North China Plain, a random forest (RF) machine learning model of satellite-based QPE was established and verified. The interpretation of the output of the RF model of satellite-based QPE was further explored by using the Shapley Additive Explanations (SHAP) algorithm. Results showed that the correlation coefficient between the predicted and observed precipitation intensity of the RF model was .64, with a root-mean-square error of .27 mm/h. The importance ranking obtained by SHAP model is completely consistent with the outputs of random forest importance function. This SHAP method can display the importance ranking of global features with positive/negative contribution values (e.g., current precipitation, column water vapor/black body temperature, cloud base height), and can visualize the marginal contribution values of local features under interaction. Therefore, combining the RF and SHAP methods provides a valuable way to interpret the output of machine learning models for satellite-based QPE, as well as an important basis for the selection of input variables for satellite-based QPE.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3