Long-term impact of manuring on soil organic matter quality indicators under field cropping systems

Author:

Yadav Rajendra Kumar,Purakayastha Tapan Jyoti,Kumar Dhiraj,Jha Prakash Kumar,Mahala Deep Mohan,Yadav Dinesh Kumar,Khan M. A.,Singh Surendra,Singh Shikha,Vara Prasad P. V.

Abstract

Introduction: Soil organic matter (SOM) quality is the major driving force for nutrient cycles impacting the productivity of cropping systems. Identification of sensitive indicators and developing metrics to assess SOM quality is a major challenge under field conditions.Methods: Data from a continuing long-term experiment since 2005 at Modipuram, India, were analyzed with key objectives to 1) observe the long-term effect of vermicompost/crop residues alone or in conjunction with NPK chemical fertilizers on crop yield and quality of SOM, 2) identify and develop SOM quality indicators (SOMQI) by encompassing sensitive indicators, and 3) predict system productivity by using SOMQI under rice (Oryza sativa L.)–potato (Solanum tuberosum L.)–wheat (Triticum aestivum L.) (RPW) and maize (Zea mays L.)–potato–onion (Allium cepa L.) (MPO) cropping systems. The treatments comprised of 100% NPK fertilizer; 100% N from vermicompost (N-VC); 50% NPK from fertilizer + 50% N from VC; 100% NPK from fertilizer + crop residue (CR); 100% N from VC + CR.Results: Results showed that continuous application of 100% N-VC and 100% N-VC+CR for eight years considerably increased the soil’s particulate organic matter carbon (POM-C), light fraction organic matter carbon (LFOM-C), and nitrogen (LFOM-N), dissolved organic carbon (DOC) and nitrogen (DON), as well as the available N (AN), available P (AP) and available S (AS) over control. Principal component analysis (PCA) identified AN, POM-C, LFOM-C: N, and DON in RPW and AN, POM-C, microbial biomass carbon (MBC), and LFOM-C: N in MPO cropping system as sensitive SOM quality indicators for the development of SOMQI. Under the MPO cropping system, results were more pronounced with 100% N-VC and 50% NPK+50% N-VC at 0–15 cm soil depth. Furthermore, at 15–30 cm depth, the effect was more prominent in 100% NPK + CR over other treatments.Discussion: Overall MPO cropping system exhibited better SOMQI than the RPW system. Rice, wheat, and maize yields increased significantly under different fertilizer treatments with organic or inorganic amendments. Substitution of fertilizer N with organic sources showed comparable yields obtained under 100% NPK treatment. Partial substitution of chemical fertilizers either by VC and/or CR enhanced the SOM quality and productivity under both cropping systems. The use of PCA-based SOMQI can be helpful in assessing SOM quality and predicting the productivity of cropping systems.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3