Enhanced susceptibility to oiling may limit denitrification recovery in marshes subjected to woody encroachment

Author:

Tatariw Corianne,Mortazavi Behzad,Flournoy Nikaela,Kleinhuizen Alice A.,Crawford Patrice,Overton Edward B.,Sobecky Patricia A.

Abstract

Coastal salt marshes provide valuable ecosystem services but are subjected to multiple concomitant stressors that may impact their ability to provide those services. Global climate change has led to the poleward expansion of mangroves into salt marshes on each continent where mangroves and marshes co-occur. In the northern Gulf of Mexico, warming winter temperatures have resulted in the expansion of Avicennia germinans (black mangrove) into forb-dominated salt marshes, resulting in a shift in ecosystem structure that can impact the ecosystem services marshes provide, including biogeochemical processes such as nitrogen removal. There have been limited studies addressing how mangrove expansion impacts nitrogen removal rates in salt marshes, but it is possible that mangroves enhance microbial nitrogen removal capacity through more efficient oxygen translocation to sediments. However, mangroves are more sensitive to oiling (such as occurred during the 2010 Deepwater Horizon spill) than marsh plants, such as Spartina alterniflora, which have a higher turnover. Thus, even if they enhance nitrogen removal, if they cannot withstand disturbances such as oiling, there still may be a loss of function associated with woody encroachment. We conducted a field study to assess the impact of woody encroachment in mediating biogeochemical recovery 7 to 8 years after the Deepwater Horizon oil spill. We collected sediments from S. alterniflora- and A. germinans-dominated plots in the Chandeleur Islands (LA, United States), a chain of barrier islands in the northern Gulf of Mexico subjected to a range of oiling following the spill. We compared nitrate reduction rates (denitrification and dissimilatory nitrate reduction to ammonium), microbial community composition, and denitrifier marker gene abundance at sites subjected to light and moderate oiling using a combination of isotope pairing on sediment slurries, 16S sequencing, and qPCR. We predicted that overall, denitrification rates and microbial functional capacity would be enhanced in mangrove-dominated sediments. We also predicted that these enhancements would be diminished at the more intensely oiled site due to the higher susceptibility of A. germinans to oiling. Denitrification potential rates were higher in mangrove sediments at the lightly oiled site, whereas dissimilatory nitrate reduction to ammonium potential rates were higher in marsh sediments. Indicator analysis of 16S rRNA data selected putative sulfur cycling taxa as indicators of marsh sediments, suggesting that changes in oxygen availability associated with encroachment may be driving the differences in process rates. There was no difference in process rates between plant types at the moderately oiled site, where heavily weathered oil residue was still present. Sediment nutrient stocks were lower in moderately oiled mangrove plots than in lightly oiled mangrove plots, suggesting that sediment fertility recovery following the spill may have been slower in the mangroves, contributing to a change in ecosystem function. This study shows that woody encroachment has the potential to impact both the biogeochemical services that marshes provide and their response to and recovery from disturbances.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3