Influence of foliar traits, watershed physiography, and nutrient subsidies on stream water quality in the upper midwestern United States

Author:

Singh Aditya,Townsend Philip A.

Abstract

The relationship between nutrient cycling and water quality in mixed-use ecosystems is driven by interactions among biotic and abiotic processes. However, the underlying processes cannot always be directly observed or modeled at broad spatial scales. Numerous empirical studies have employed land use patterns, variations in watershed physiography or disturbance regimes to characterize nutrient export from mixed-use watersheds, but simultaneously disentangling the effects of such factors remains challenging and few models directly incorporate vegetation biochemistry. Here we use structural equation models (SEMs) to assess the relative influence of foliar chemical traits (derived from imaging spectroscopy), watershed physiography, and human land use on the water quality (summer baseflow nitrate-N and soluble reactive phosphorus concentration) in watersheds across the Upper Midwestern United States. We use an SEM to link water quality (stream nitrate-nitrogen and dissolved phosphorus) to foliar retention (AVIRIS-Classic derived foliar traits related to recalcitrance), watershed retention (wetland proportion, MODIS Tasseled Cap Wetness), runoff (agricultural and urban land use), and watershed leakiness (AVIRIS-Classic foliar nitrogen, nitrogen deposition). The SEMs confirmed that variables associated with foliar retention derived from imaging spectroscopy are negatively related to watershed leakiness (standardized path coefficient = −0.892) and positively to watershed retention (standardized path coefficient = 0.705), with features related to watershed retention and runoff exerting the strongest controls on water quality (standardized path coefficients of −0.270 and 0.331 respectively). Comparing forested and agricultural watersheds, we found significantly increased importance of foliar retention to watershed leakiness in forests compared to agriculture (standardized coefficients of −1.004 and −0.764 respectively), with measures of watershed retention more important to runoff and water quality in agricultural watersheds. The results illustrate the capacity of imaging spectroscopy to provide measures of foliar traits that influence nutrient cycling in watersheds. Ultimately, the results may help focus development and restoration policies towards building more resilient landscapes that take into consideration associations among functional traits of vegetation, physiography and climate.

Funder

Goddard Space Flight Center

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference152 articles.

1. Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests;Aber;Glob. Biogeochem. Cycles,1997

2. Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems;Aber,1991

3. The influence of catchment land use on stream integrity across multiple spatial scales;Allan;Freshw. Biol.,1997

4. The decomposition of effects in pathanalysis;Alwin,1975

5. Soil–plant nitrogen cycling modulated carbon exchanges in a western temperate conifer forest in Canada;Arain;Agric. For. Meteorology,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3