How Does Green Technology Innovation Affect Carbon Emissions? A Spatial Econometric Analysis of China’s Provincial Panel Data

Author:

Cai Aixin,Zheng Shiyong,Cai LiangHua,Yang Hongmei,Comite Ubaldo

Abstract

Due to an increasing number of issues such as climate change, sustainable development has become an important theme worldwide. Sustainable development is inseparable from technological innovation. Only by making technological breakthroughs can we ensure the overall integration of economic development and environmental protection. Here, based on China’s inter-provincial panel data from 2006 to 2019, we examine the relationship between green technological innovation and carbon dioxide (CO2) emissions in 30 provinces (excluding Hong Kong, Macao, Taiwan, and Tibet) and sub-regions (eastern, central, and western China) in China using a space panel econometric model based on the STIRPAT equation. Additionally, we use geographic information analysis methods to analyze the spatial pattern and evolution characteristics of CO2 emissions. Our major finding is that, from the perspective of the whole country, green technology innovation has a negative correlation with carbon emissions, but the effect is not obvious. In addition, from the regional sample, green technology innovation in the eastern and central regions can effectively reduce carbon emissions, while in the western region, green technology innovation can promote carbon emissions in the province. At the same time, the research results show a strong spatial spillover effect of inter-provincial carbon dioxide emissions, and the progress of green technology in neighboring provinces has a negative impact on carbon emissions in their own provinces. Therefore, cross-province policies and actions for reducing carbon emissions are necessary. Additionally, our results show that carbon-emission driving factors, such as economic development, industrial structure, energy consumption structure, and population, have a significant positive effect on carbon dioxide emissions. Based on the above research results, we put forward corresponding policy recommendations.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3