An enigma: A meta-analysis reveals the effect of ubiquitous microplastics on different taxa in aquatic systems

Author:

Moyo Sydney

Abstract

Microplastics are ubiquitous in aquatic ecosystems globally, with tropical freshwater systems underrepresented in the literature. The ubiquity of microplastics may affect the feeding, growth, reproduction, and survival of organisms in aquatic systems; however, the data on the potential effects of microplastics on aquatic organisms is tentative. In the current study, I conducted a meta-analysis using published data to examine the impacts of microplastic exposure on functional traits (i.e., feeding, growth, reproduction, survival) of fish and aquatic invertebrates. The data revealed that while there were within-taxa negative effects on traits such as reproduction and growth some effect sizes were low, suggesting that the exposure to microplastics may vary across taxa. Globally, negative effects on growth, reproduction, and even survival were evident in some taxa (e.g., bivalves, crustaceans). Considering feeding habits, negative effects of microplastic were more pronounced in bacterivores, omnivores, predators, and filter feeders compared to shredders. In tropical freshwater systems, microplastics had no significant effects on the feeding, growth, reproduction, and survival of aquatic organisms. It is worth noting that organisms that are passive feeders (e.g., bivalves) may be particularly susceptible to microplastic pollution, which in turn may have long-lasting effects on the stability of lacustrine and lotic food webs. Because microplastics may impart more chronic effects than acute effects, future works must include understudied regions of the world (e.g., freshwater systems) and must emphasize the subtle role that microplastics may play on the physiology and behavior of organisms in the long term.

Funder

Rhodes College

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3