Rainfall classification and forecasting based on a novel voting adaptive dynamic optimization algorithm

Author:

Elkenawy El-Sayed M.,Alhussan Amel Ali,Eid Marwa M.,Ibrahim Abdelhameed

Abstract

Environmental issues of rainfall are basic in terms of understanding and management of ecosystems and natural resources. The rainfall patterns significantly affect soil moisture, vegetation growth and biodiversity in the ecosystems. In addition, proper classification of rainfall types helps in the evaluation of the risk of flood, drought, and other extreme weather events’ risk, which immensely affect the ecosystems and human societies. Rainfall classification can be improved by using machine learning and metaheuristic algorithms. In this work, an Adaptive Dynamic Puma Optimizer (AD-PO) algorithm combined with Guided Whale Optimization Algorithm (Guided WOA) introduces a potentially important improvement in rainfall classification approaches. These algorithms are to be combined to enable researchers to comprehend and classify rain events by their specific features, such as intensity, duration, and spatial distribution. A voting ensemble approach within the proposed (AD-PO-Guided WOA) algorithm increases its predictive performance because of the combination of predictions from several classifiers to localize the dominant rainfall class. The presented approach not only makes the classifying of rain faster and more accurate but also strengthens the robustness and trustworthiness of the classification in this regard. Comparison to other optimization algorithms validates the effectiveness of the AD-PO-Guided WOA algorithm in terms of performance metrics with an outstanding 95.99% accuracy. Furthermore, the second scenario is applied for forecasting based on the long short-term memory networks (LSTM) model optimized by the AD-PO-Guided WOA algorithm. The AD-PO-Guided WOA- LSTM algorithm produces rainfall prediction with an MSE of 0.005078. Wilcoxon rank test, descriptive statistics, and sensitivity analysis are applied to help evaluating and improving the quality and validity of the proposed algorithm. This intensive method facilitates rainfall classification and is a base for suggested measures that cut the hazards of extreme weather events on societies.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3