Cadmium fractionation in soils affected by organic matter application: Transfer of cadmium to cacao (Theobroma cacao L.) tissues

Author:

Gutiérrez Eduardo,Chávez Eduardo,Gamage Kasuni H. H.,Argüello David,Galkaduwa Madhubhashini B.,Hettiarachchi Ganga M.

Abstract

Elevated cadmium (Cd) concentrations in cacao (Theobroma cacao L.) beans have concerned chocolate consumers worldwide because of the potential detrimental human health effects. Compost application on the soil surface could modify the labile Cd in soils and yet it could enhance Cd bound to humic and fulvic acids, forming an organo-metallic complex that could reduce the availability of Cd to plants. This study investigated the effect of surface compost applications at two rates, the chemistry and fractionation of Cd at two soil depths, and the relationship of these soil Cd pools with plant uptake. The research was carried out on four Ecuadorian cacao farms. The compost was applied at 6.25 Mg·ha−1 (low) and 12.5 Mg·ha−1 (high) per annum. There was also a control treatment with no compost application. Soil samples were collected at two depths, surface (0–5 cm) and below surface (5–20 cm). Leaf samples and cacao pots were collected from each treatment. Soil Cd was fractionated into five operational pools. Additionally, the Cd-bound to fulvic acids and humic acids in soils were extracted separately. The EDTA-extractable fraction showed the highest concentration of Cd at both depths. Cadmium bound to fulvic acids was higher in compost-applied soils than in the control (p < 0.05) in all farms. Leaf and bean-Cd were negative and significantly correlated with the Cd extracted by EDTA, NaOH, HNO3, and FA-Cd pools. The mobility of Cd in soils cultivated with cacao, based on plant uptake, was strongly associated with the soils’ chemical characteristics, especially pH and SOC. The surface application of organic matter facilitates the redistribution of Cd in soil fractions, mainly in EDTA-, NaOH-, and HNO3-extractable fractions, suggesting a reduction in Cd soil–plant transfer via adsorption or complexation processes. Apparently, the application of high-quality compost, i.e., high FA content, could aid in mitigating Cd contamination in cacao orchards. Experiments on perennial crops merit a longer evaluation time to better assess the changes in plant-Cd.

Funder

U.S. Department of Agriculture

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3