2022 UK heatwave impacts on agrifood: implications for a climate-resilient food system

Author:

Davie Jemma C. S.,Falloon Pete D.,Pain Daniel L. A.,Sharp Tierney J.,Housden Maddie,Warne Thomas C.,Loosley Tom,Grant Erin,Swan Jess,Spincer James D. G.,Crocker Tom,Cottrell Andrew,Pope Edward C. D.,Griffiths Simon

Abstract

Record-breaking high temperatures were experienced across the United Kingdom during summer 2022. The impacts of these extreme climatic conditions were felt across the food system, including increased energy costs for cold storage, the failure of refrigeration systems in numerous retail facilities, and impacts on livestock including heat stress. Future climate projections indicate an increased likelihood and duration of extreme high temperatures like those experienced in 2022. Learning from the impacts of the 2022 heatwave on the United Kingdom food system can help identify adaptations that build resilience to climate change. We explore the impacts through two case studies (United Kingdom poultry and wheat sectors), discuss potential adaptation options required for a climate-resilient, net-zero United Kingdom food system and consider future research needs. United Kingdom chicken meat production was 9% lower in July 2022 than July 2021; in contrast, energy costs increased for both production and refrigeration. Potential heatwave adaptation measures for poultry include transitioning to heat tolerant chicken breeds, lower stocking density, dehumidification cooling and misting systems, nutritional supplements, and improving retail refrigeration resilience and efficiency. United Kingdom wheat yields were 8% higher in 2022 than the 2017–2021 average. Increases were observed in every United Kingdom region but were least in the South and East where the heatwave intensity was strongest. Future adaptation measures to avoid negative impacts of summer heat stress on winter wheat could include earlier maturing and heat/drought tolerant varieties, earlier autumn sowing, targeted irrigation for drought around anthesis, and soil and water conservation measures.

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3