Landsat Data Ecosystem Case Study: Actor Perceptions of the Use and Value of Landsat

Author:

Molder Edmund B.,Schenkein Sarah F.,McConnell Abby E.,Benedict Karl K.,Straub Crista L.

Abstract

It is well-known that Earth observation (EO) data plays a critical role in scientific understanding about the global environment. There is also growing support for the use of EO data to provide context-specific insights, with significant implications for their use in decision support systems. Technological development over recent years, including cloud computing infrastructure, machine learning techniques, and rapid expansion of the velocity, volume, and variety of space-borne data sources, offer huge potential to provide solutions to the myriad environmental problems facing society and the planet. The USGS/NASA Landsat Program, the longest continuously gathered source of land surface data, has played a central role in our understanding of environmental change, particularly for its contribution of longitudinal products that offer greater context for present research and decision support activities. The challenge facing the Landsat and EO data community, however, now lies in moving beyond context-specific knowledge generation to translating such knowledge into tangible value for society. Drawing from an open data ecosystem framework and qualitative social science methods, we map the Landsat data ecosystem (LDE) and the relationships linking multiple actors responsible for processing, indexing, analyzing, synthesizing, and translating raw Landsat data into information that is useful, useable, and used by end users in particular social-environmental contexts. Both the role of Big Data and associated technologies are discussed as they relate to the ultimate use of Landsat-derived information products to guide decision-making, and key data ecosystem characteristics that shape the likelihood of these products’ use are highlighted.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Reference71 articles.

1. Landsat Inventory of Surface-Mined Areas Using Extendible Digital Techniques;Anderson,1975

2. LANDSAT Data: a New Perspective for Geology;Baker;Photogrammetric Eng. Remote Sensing,1975

3. Engaging with Stakeholders to Produce Actionable Science: a Framework and Guidance;Bamzai-Dodson;Weather, Clim. Soc,2021

4. Forest Monitoring Using Landsat Time Series Data: A Review;Banskota;Can. J. Remote Sensing,2014

5. Conservation Social Science: Understanding and Integrating Human Dimensions to Improve Conservation;Bennett;Biol. Conservation,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3