Complex streamflow responses to climate warming in five river basins in South Yakutia, Russia

Author:

Wang Ping,Shpakova Raisa N.

Abstract

The climate is warming much faster than the global average at the northern mid–high latitudes, leading to intensified hydrological cycles. However, it is unclear whether the response of streamflow to climate change is uniform across river basins with areas of 104–105 km2. In this study, monthly streamflow data from five river basins (Bol’shoy Patom, Chara, Olekma, Timpton, and Uchur) and gridded monthly temperature and precipitation data from the Russian South Yakutia at 53.5–61.5°N were analysed to investigate changes in their annual streamflow from 1934 to 2019 and their responses to climate warming. The results showed significant increasing trends in air temperature for all five basins at rates of 0.20°C–0.22°C/decade (p < 0.001), with faster warming after the 1980s. Apart from the Uchur River Basin, increasing trends in annual precipitation were observed in the other four river basins at rates of 9.3–15.7 mm/decade (p < 0.01). However, temporal changes in streamflow were much more complex than those in air temperature and precipitation among the five basins. Only two of the five basins showed significant increasing trends in annual streamflow with change rates of 17.1 mm/decade (p < 0.001) for the Chara River and 7.7 mm/decade (p < 0.05) for the Olekma River. Although the other three basins showed slightly increasing trends in annual streamflow (1.8–4.0 mm/decade), these trends did not pass significance tests (p > 0.05). By analysing the temperature-precipitation-streamflow relationships, we determined that the annual streamflow positively responds to precipitation, while winter streamflow is most sensitive to temperature. With climate warming, the streamflow during the winter period (October-April) increased significantly in four of the five river basins at rates of 1.4–3.1 mm/decade (p < 0.001), suggesting that warming-induced permafrost thawing increases baseflow. Although the streamflow response of large Siberian rivers to climate change is consistent, our results suggest that the streamflow response to climate change in relatively small river basins (104–105 km2) is much more complex.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3