The Geobattery Concept: A Geothermal Circular Heat Network for the Sustainable Development of Near Surface Low Enthalpy Geothermal Energy to Decarbonise Heating

Author:

Fraser-Harris Andrew,McDermott Christopher Ian,Receveur Mylène,Mouli-Castillo Julien,Todd Fiona,Cartwright-Taylor Alexis,Gunning Andrew,Parsons Mark

Abstract

Decarbonisation of heating represents a major challenge in efforts to reach Net Zero carbon emissions, especially for countries that rely heavily on the combustion of carbon-based fossil fuels to meet heating demand such as the United Kingdom. In this paper we explore the use of near surface low enthalpy geothermal energy accessed via commercial and domestic heat pump technology. These resources may become increasingly important in decarbonisation efforts but, while they are renewable, their sustainability is contingent on appropriate management. Here, we introduce a new geothermal circular heat network concept, known as a “geobattery,” which redistributes recyclable heat from emitters to users via elevated permeability pathways in the subsurface and offers a platform to manage shallow geothermal resources. If successfully implemented the concept has the potential to provide low carbon, resilient, low-cost heating that is sustainable both in terms of heat pump performance and the shallow geothermal resource. We demonstrate the concept based on the cooling requirements of a case study data centre with existing high energy use and the potential to inject the generated heat into elevated permeability pathways in the shallow subsurface. We show that thermal recharge under these conditions has the potential to arrest subsurface temperature declines associated with closely spaced borehole heat exchangers, ensure the long-term sustainability of shallow geothermal resources for generations to come, and play an important role in the decarbonisation of heating.

Funder

Natural Environment Research Council

Publisher

Frontiers Media SA

Reference84 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3