Heat Adaptation Induced Cross Protection Against Ethanol Stress in Tetragenococcus halophilus: Physiological Characteristics and Proteomic Analysis

Author:

Yang Huan,Yao Shangjie,Zhang Min,Wu Chongde

Abstract

Ethanol is a toxic factor that damages membranes, disturbs metabolism, and may kill the cell. Tetragenococcus halophilus, considered as the cell factory during the manufacture of traditional fermented foods, encounters ethanol stress, which may affect the viability and fermentative performance of cells. In order to improve the ethanol tolerance of T. halophilus, a strategy based on cross protection was proposed in the current study. The results indicated that cross protection induced by heat preadaptation (45°C for 1.5 h) could significantly improve the stress tolerance (7.24-fold increase in survival) of T. halophilus upon exposure to ethanol (10% for 2.5 h). Based on this result, a combined analysis of physiological approaches and TMT-labeled proteomic technology was employed to investigate the protective mechanism of cross protection in T. halophilus. Physiological analysis showed that the heat preadapted cells exhibited a better surface phenotype, higher membrane integrity, and higher amounts of unsaturated fatty acids compared to unadapted cells. Proteomic analysis showed that a total of 163 proteins were differentially expressed in response to heat preadaptation. KEGG enrichment analysis showed that energy metabolism, membrane transport, peptidoglycan biosynthesis, and genetic information processing were the most abundant metabolic pathways after heat preadaptation. Three proteins (GpmA, AtpB, and TpiA) involved in energy metabolism and four proteins (ManM, OpuC, YidC, and HPr) related to membrane transport were up-regulated after heat preadaptation. In all, the results of this study may help understand the protective mechanisms of preadaptation and contribute to the improvement of the stress resistance of T. halophilus during industrial processes.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3