Biotin pathway in novel Fodinibius salsisoli sp. nov., isolated from hypersaline soils and reclassification of the genus Aliifodinibius as Fodinibius

Author:

Galisteo Cristina,de la Haba Rafael R.,Sánchez-Porro Cristina,Ventosa Antonio

Abstract

Hypersaline soils are extreme environments that have received little attention until the last few years. Their halophilic prokaryotic population seems to be more diverse than those of well-known aquatic systems. Among those inhabitants, representatives of the family Balneolaceae (phylum Balneolota) have been described to be abundant, but very few members have been isolated and characterized to date. This family comprises the genera Aliifodinibius and Fodinibius along with four others. A novel strain, designated 1BSP15-2V2T, has been isolated from hypersaline soils located in the Odiel Saltmarshes Natural Area (Southwest Spain), which appears to represent a new species related to the genus Aliifodinibius. However, comparative genomic analyses of members of the family Balneolaceae have revealed that the genera Aliifodinibius and Fodinibius belong to a single genus, hence we propose the reclassification of the species of the genus Aliifodinibius into the genus Fodinibius, which was first described. The novel strain is thus described as Fodinibius salsisoli sp. nov., with 1BSP15-2V2T (=CCM 9117T = CECT 30246T) as the designated type strain. This species and other closely related ones show abundant genomic recruitment within 80–90% identity range when searched against several hypersaline soil metagenomic databases investigated. This might suggest that there are still uncultured, yet abundant closely related representatives to this family present in these environments. In-depth in-silico analysis of the metabolism of Fodinibius showed that the biotin biosynthesis pathway was present in the genomes of strain 1BSP15-2V2T and other species of the family Balneolaceae, which could entail major implications in their community role providing this vitamin to other organisms that depend on an exogenous source of this nutrient.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3