Predicting antimicrobial resistance of bacterial pathogens using time series analysis

Author:

Kim Jeonghoon,Rupasinghe Ruwini,Halev Avishai,Huang Chao,Rezaei Shahbaz,Clavijo Maria J.,Robbins Rebecca C.,Martínez-López Beatriz,Liu Xin

Abstract

Antimicrobial resistance (AMR) is arguably one of the major health and economic challenges in our society. A key aspect of tackling AMR is rapid and accurate detection of the emergence and spread of AMR in food animal production, which requires routine AMR surveillance. However, AMR detection can be expensive and time-consuming considering the growth rate of the bacteria and the most commonly used analytical procedures, such as Minimum Inhibitory Concentration (MIC) testing. To mitigate this issue, we utilized machine learning to predict the future AMR burden of bacterial pathogens. We collected pathogen and antimicrobial data from >600 farms in the United States from 2010 to 2021 to generate AMR time series data. Our prediction focused on five bacterial pathogens (Escherichia coli, Streptococcus suis, Salmonella sp., Pasteurella multocida, and Bordetella bronchiseptica). We found that Seasonal Auto-Regressive Integrated Moving Average (SARIMA) outperformed five baselines, including Auto-Regressive Moving Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA). We hope this study provides valuable tools to predict the AMR burden not only of the pathogens assessed in this study but also of other bacterial pathogens.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3