Limited permissibility of ENL-R and Mv-1-Lu mink cell lines to SARS-CoV-2

Author:

Le Bideau Marion,Pires de Souza Gabriel Augusto,Boschi Celine,Baudoin Jean-Pierre,Penant Gwilherm,Jardot Priscilla,Fenollar Florence,Colson Philippe,Lenk Matthias,La Scola Bernard

Abstract

The SARS-CoV-2 pandemic started in the end of 2019 in Wuhan, China, which highlighted the scenario of frequent cross-species transmission events. From the outbreak possibly initiated by viral spill-over into humans from an animal reservoir, now we face the human host moving globally while interacting with domesticated and peridomestic animals. The emergence of a new virus into the ecosystem leads to selecting forces and species-specific adaptations. The adaptation of SARS-CoV-2 to other animals represents a risk to controlling the dissemination of this coronavirus and the emergence of new variants. Since 2020, several mink farms in Europe and the United States have had SARS-CoV-2 outbreaks with human–mink and mink–human transmission, where the mink-selected variants possibly hold evolutionary concerning advantages. Here we investigated the permissibility of mink lung-derived cells using two cell lines, Mv-1-Lu and ENL-R, against several lineages of SARS-CoV-2, including some classified as variants of concern. The viral release rate and the infectious titers indicate that these cells support infections by different SARS-CoV-2 lineages. The viral production occurs in the first few days after infection with the low viral release by these mink cells, which is often absent for the omicron variant for lung cells. The electron microscopy reveals that during the viral replication cycle, the endomembrane system of the mink-host cell undergoes typical changes while the viral particles are produced, especially in the first days of infection. Therefore, even if limited, mink lung cells may represent a selecting source for SARS-CoV-2 variants, impacting their transmissibility and pathogenicity and making it difficult to control this new coronavirus.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference64 articles.

1. The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters;Abdelnabi;Antiviral Res.,2022

2. The proximal origin of SARS-CoV-2;Andersen;Nat. Med.,2020

3. COVID-19 VE HAYVANLAR;Azkur;Vet. Farmakoloji ve Toksikoloji Derneği Bülteni,2020

4. SARS-CoV-2: Ultrastructural characterization of morphogenesis in an in vitro system;Barreto-Vieira;Viruses,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3