Sugarcane–Peanut Intercropping System Enhances Bacteria Abundance, Diversity, and Sugarcane Parameters in Rhizospheric and Bulk Soils

Author:

Pang Ziqin,Fallah Nyumah,Weng Peiying,Zhou Yongmei,Tang Xiumei,Tayyab Muhammad,Liu Yueming,Liu Qiang,Xiao Yijie,Hu Chaohua,Kan Yongjun,Lin Wenxiong,Yuan Zhaonian

Abstract

Sugarcane–legume intercropping systems can effectively control pests and diseases as well as improve the fertility and health of farmland soil. However, little is known about the response of bacterial abundance, diversity, and community composition in the rhizosphere and non-rhizosphere soils under the sugarcane–peanut farming system. A field experiment was conducted with two treatments: sugarcane monoculture and sugarcane–peanut intercropping to examine the response of sugarcane parameters and edaphic factors. We also deciphered bacterial abundance, diversity, and community composition in the root endosphere, rhizosphere, and bulk soil by leveraging Illumina sequencing to conduct the molecular characterization of the 16S rRNA gene and nitrogenase (nifH) gene. We observed that sugarcane–peanut intercropping exhibited the advantages of tremendously increasing cane stalk height, stalk weight, and millable stalk number/20 m, and edaphic factors, namely, pH (1.13 and 1.93), and available phosphorus exhibited a fourfold and sixfold increase (4.66 and 6.56), particularly in the rhizosphere and bulk soils, respectively. Our result also showed that the sugarcane–peanut intercropping system significantly increased the bacterial richness of the 16S rRNA gene sequencing data by 13.80 and 9.28% in the bulk soil and rhizosphere soil relative to those in the monocropping sugarcane system, respectively. At the same time, sugarcane intercropping with peanuts significantly increased the Shannon diversity of nitrogen-fixing bacteria in the sugarcane rhizosphere soil. Moreover, most edaphic factors exhibited a positive regularity effect on bacterial community composition under the intercropping system. A linear discriminant analysis with effect size analysis of the 16S rRNA sequencing data revealed that bacteria in the root endosphere of the intercropped cane proliferated profoundly, primarily occupied by Devosia, Rhizobiales, Myxococcales, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Bradyrhizobium, and Sphingomonas. In conclusion, our findings demonstrated that sugarcane–peanut intercropping can enhance edaphic factors, sugarcane parameters, and bacterial abundance and diversity without causing adverse impacts on crop production and soil.

Funder

Earmarked Fund for China Agriculture Research System

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3