More Than a Methanotroph: A Broader Substrate Spectrum for Methylacidiphilum fumariolicum SolV

Author:

Picone Nunzia,Mohammadi Sepehr S.,Waajen Annemiek C.,van Alen Theo A.,Jetten Mike S. M.,Pol Arjan,Op den Camp Huub J. M.

Abstract

Volcanic areas emit a number of gases including methane and other short chain alkanes, that may serve as energy source for the prevailing microorganisms. The verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV was isolated from a volcanic mud pot, and is able to grow under thermoacidophilic conditions on different gaseous substrates. Its genome contains three operons encoding a particulate methane monooxygenase (pMMO), the enzyme that converts methane to methanol. The expression of two of these pmo operons is subjected to oxygen-dependent regulation, whereas the expression of the third copy (pmoCAB3) has, so far, never been reported. In this study we investigated the ability of strain SolV to utilize short-chain alkanes and monitored the expression of the pmo operons under different conditions. In batch cultures and in carbon-limited continuous cultures, strain SolV was able to oxidize and grow on C1–C3 compounds. Oxidation of ethane did occur simultaneously with methane, while propane consumption only started once methane and ethane became limited. Butane oxidation was not observed. Transcriptome data showed that pmoCAB1 and pmoCAB3 were induced in the absence of methane and the expression of pmoCAB3 increased upon propane addition. Together the results of our study unprecedently show that a pMMO-containing methanotroph is able to co-metabolize other gaseous hydrocarbons, beside methane. Moreover, it expands the substrate spectrum of verrucomicrobial methanotrophs, supporting their high metabolic flexibility and adaptation to the harsh and dynamic conditions in volcanic ecosystems.

Funder

European Research Council

Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3