Co-infection of two eukaryotic pathogens within clam populations in Arcachon Bay

Author:

Itoïz Sarah,Mouronvalle Clara,Perennou Morgan,Chailler Elisa,Smits Morgan,Derelle Evelyne,Metz Sebastian,Le Goïc Nelly,Bidault Adeline,de Montaudouin Xavier,Arzul Isabelle,Soudant Philippe,Chambouvet Aurélie

Abstract

The parasitic species Perkinsus olseni (= atlanticus) (Perkinsea, Alveolata) infects a wide range of mollusc species and is responsible for mortality events and economic losses in the aquaculture industry and fisheries worldwide. Thus far, most studies conducted in this field have approached the problem from a “one parasite-one disease” perspective, notably with regards to commercially relevant clam species, while the impact of other Perkinsus species should also be considered as it could play a key role in the disease phenotype and dynamics. Co-infection of P. olseni and P. chesapeaki has already been sporadically described in Manila clam populations in Europe. Here, we describe for the first time the parasitic distribution of two Perkinsus species, P. olseni and P. chesapeaki, in individual clam organs and in five different locations across Arcachon Bay (France), using simultaneous in situ detection by quantitative PCR (qPCR) duplex methodology. We show that P. olseni single-infection largely dominated prevalence (46–84%) with high intensities of infection (7.2 to 8.5 log-nb of copies. g−1of wet tissue of Manila clam) depending on location, suggesting that infection is driven by the abiotic characteristics of stations and physiological states of the host. Conversely, single P. chesapeaki infections were observed in only two sampling stations, Ile aux Oiseaux and Gujan, with low prevalences 2 and 14%, respectively. Interestingly, the co-infection by both Perkinsus spp., ranging in prevalence from 12 to 34%, was distributed across four stations of Arcachon Bay, and was detected in one or two organs maximum. Within these co-infected organs, P. olseni largely dominated the global parasitic load. Hence, the co-infection dynamics between P. olseni and P. chesapeaki may rely on a facilitating role of P. olseni in developing a primary infection which in turn may help P. chesapeaki infect R. philippinarum as a reservoir for a preferred host. This ecological study demonstrates that the detection and quantification of both parasitic species, P. olseni and P. chesapeaki, is essential and timely in resolving cryptic infections and their consequences on individual hosts and clam populations.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3