Production of chain-extended cinnamoyl compounds by overexpressing two adjacent cluster-situated LuxR regulators in Streptomyces globisporus C-1027

Author:

Li Xingxing,Ren Weicong,Li Yihong,Shi Yuanyuan,Sun Hongmin,Wang Lifei,Wu Linzhuan,Xie Yunying,Du Yu,Jiang Zhibo,Hong Bin

Abstract

Natural products from microorganisms are important sources for drug discovery. With the development of high-throughput sequencing technology and bioinformatics, a large amount of uncharacterized biosynthetic gene clusters (BGCs) in microorganisms have been found, which show the potential for novel natural product production. Nine BGCs containing PKS and/or NRPS in Streptomyces globisporus C-1027 were transcriptionally low/silent under the experimental fermentation conditions, and the products of these clusters are unknown. Thus, we tried to activate these BGCs to explore cryptic products of this strain. We constructed the cluster-situated regulator overexpressing strains which contained regulator gene(s) under the control of the constitutive promoter ermE*p in S. globisporus C-1027. Overexpression of regulators in cluster 26 resulted in significant transcriptional upregulation of biosynthetic genes. With the separation and identification of products from the overexpressing strain OELuxR1R2, three ortho-methyl phenyl alkenoic acids (compounds 1–3) were obtained. Gene disruption showed that compounds 1 and 2 were completely abolished in the mutant GlaEKO, but were hardly affected by deletion of the genes orf3 or echA in cluster 26. The type II PKS biosynthetic pathway of chain-extended cinnamoyl compounds was deduced by bioinformatics analysis. This study showed that overexpression of the two adjacent cluster-situated LuxR regulator(s) is an effective strategy to connect the orphan BGC to its products.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3