Streptomyces sp. AC04842: Genomic Insights and Functional Expression of Its Latex Clearing Protein Genes (lcp1 and lcp2) When Cultivated With Natural and Vulcanized Rubber as the Sole Carbon Source

Author:

Basik Ann Anni,Trakunjae Chanaporn,Yeo Tiong Chia,Sudesh Kumar

Abstract

Rubber-degrading Actinobacteria have been discovered and investigated since 1985. Only recently, through the advancement of genomic sequencing and molecular techniques, genes and pathways involved in rubber degradation are being revealed; however, the complete degradation pathway remains unknown. Streptomyces sp. AC04842 (JCM 34241) was discovered by screening at a Culture Collection Centre in Sarawak for Actinomycetes forming a clear zone on natural rubber latex agar. Streptomyces is a dominant and well-studied soil bacterium playing an important role in soil ecology including carbon recycling and biodegradation. Streptomyces sp. AC04842 draft genome revealed the presence of 2 putative latex clearing protein (lcp) genes on its chromosome and is closely related to Streptomyces cellulosae. Under the Streptomyces genus, there are a total of 64 putative lcp genes deposited in the GenBank and UniProt database. Only 1 lcp gene from Streptomyces sp. K30 has been characterized. Unlike Streptomyces sp. K30 which contained 1 lcp gene on its chromosome, Streptomyces sp. AC04842 contained 2 lcp genes on its chromosome. Streptomyces sp. AC04842 lcp1 and lcp2 amino acid sequences showed 46.13 and 69.11%, respectively, similarity to lcp sequences of Streptomyces sp. K30. Most rubber degrading strains were known to harbor only 1 lcp gene, and only recently, 2–3 lcp homologs have been reported. Several studies have shown that lcp-homolog expression increased in the presence of rubber. To study the expression of lcp1 and lcp2 genes for Streptomyces sp. AC04842, the strain was incubated in different types of rubber as the sole carbon source. In general, the lcp1 gene was highly expressed, while the lcp2 gene expression was upregulated in the presence of vulcanized rubber. Mixtures of natural and vulcanized rubber did not further increase the expression of both lcp genes compared with the presence of a specific rubber type. In this study, we paved the way to the exploration of lcp homologs and their function in degrading different types of rubber.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3