Adaptive Pathways of Microorganisms to Cope With the Shift From P- to N-Limitation in Subtropical Plantations

Author:

Wang Chaoqun,Jiao Ruzhen

Abstract

Ecological stoichiometry is increasingly acknowledged as one of the main control factors for microbial activity and diversity. Soil carbon/nitrogen (C/N) and carbon/phosphorus (C/P) ratios are usually much higher than microbial nutrient requirements and vary with planting density and stand age in forestlands. However, how microorganisms cope with such stoichiometric imbalances and how they regulate nutrient cycling remain unclear. Here, 5- and 35-year-old experimental Cunninghamia lanceolata [Lamb.] Hook plantations with five planting densities (1,667, 3,333, 5,000, 6,667, and 10,000 stems ha−1) were used to explore the underlying mechanism of the response of microorganisms to stoichiometric imbalances. We found that (i) enzyme activity and microbial biomass and diversity increased with planting density at age 5 but decreased at age 35; (ii) soil microorganisms were P-limited at age 5, but gradually shifted from P- to N-limitation during the development of plantations from 5 to 35 years; and (iii) significantly negative relationships between microbial biomass stoichiometry and enzymatic stoichiometry were observed. The adaptive pathways of soil microorganisms to cope with stoichiometric imbalances include (i) adjusting the stoichiometry of microorganisms and enzymes; (ii) changing the relative abundance of the dominant microbial phyla; and (iii) increasing the ratio of fungal to bacterial diversity. These results highlight how to use the ecological stoichiometry method to identify soil microbial nutrient limitations with planting density during the development of plantations. By underlining the important role of stoichiometry on microbial growth and activity, these findings furthermore emphasize the dependency of organic matter transformation and nutrient cycling on the microbial community.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3