CRISPR/Cas13a-based rapid detection method for porcine deltacoronavirus

Author:

Luo Ran,Cheng Zhimeng,Wang Haoyu,Yang Qiyue,Zeng Yongping,Yang Yijun,Chen Yuankun,Li Wenting,Liu Xiao

Abstract

BackgroundPorcine deltacoronavirus (PDCoV) is a newly discovered porcine intestinal pathogenic coronavirus with a single-stranded positive-sense RNA genome and an envelope. PDCoV infects pigs of different ages and causes acute diarrhea and vomiting in newborn piglets. In severe cases, infection leads to dehydration, exhaustion, and death in sick piglets, entailing great economic losses on pig farms. The clinical symptoms of PDCoV infection are very similar to those of other porcine enteroviruses. Although it is difficult to distinguish these viral infections without testing, monitoring PDCoV is very important because it can spread in populations. The most commonly used methods for the detection of PDCoV is qPCR, which is time-consuming and require skilled personnel and equipment. Many farms cannot meet the conditions required for detection. Therefore, it is necessary to establish a faster and more convenient method for detecting PDCoV.AimsTo establish a rapid and convenient detection method for PDCoV by combining RPA (Recombinase Polymerase Isothermal Amplification) with CRISPR/Cas13a.MethodsSpecific RPA primers and crRNA for PDCoV were designed, and the nucleic acids in the samples were amplified with RPA. Fluorescent CRISPR/Cas13a detection was performed. We evaluated the sensitivity and specificity of the RPA–CRISPR/Cas13a assay using qPCR as the control method.ResultsCRISPR/Cas13a-assisted detection was completed within 90 min. The minimum detection limit of PDCoV was 5.7 × 101 copies/μL. A specificity analysis showed that the assay did not cross-react with three other porcine enteroviruses.ConclusionThe RPA–CRISPR/Cas13a method has the advantages of high sensitivity, strong specificity, fast response, and readily accessible results, and can be used for the detection of PDCoV.

Funder

National Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3