Beyond Nuclear Ribosomal DNA Sequences: Evolution, Taxonomy, and Closest Known Saprobic Relatives of Powdery Mildew Fungi (Erysiphaceae) Inferred From Their First Comprehensive Genome-Scale Phylogenetic Analyses

Author:

Vaghefi Niloofar,Kusch Stefan,Németh Márk Z.,Seress Diána,Braun Uwe,Takamatsu Susumu,Panstruga Ralph,Kiss Levente

Abstract

Powdery mildew fungi (Erysiphaceae), common obligate biotrophic pathogens of many plants, including important agricultural and horticultural crops, represent a monophyletic lineage within the Ascomycota. Within the Erysiphaceae, molecular phylogenetic relationships and DNA-based species and genera delimitations were up to now mostly based on nuclear ribosomal DNA (nrDNA) phylogenies. This is the first comprehensive genome-scale phylogenetic analysis of this group using 751 single-copy orthologous sequences extracted from 24 selected powdery mildew genomes and 14 additional genomes from Helotiales, the fungal order that includes the Erysiphaceae. Representative genomes of all powdery mildew species with publicly available whole-genome sequencing (WGS) data that were of sufficient quality were included in the analyses. The 24 powdery mildew genomes included in the analysis represented 17 species belonging to eight out of 19 genera recognized within the Erysiphaceae. The epiphytic genera, all but one represented by multiple genomes, belonged each to distinct, well-supported lineages. Three hemiendophytic genera, each represented by a single genome, together formed the hemiendophytic lineage. Out of the 14 other taxa from the Helotiales, Arachnopeziza araneosa, a saprobic species, was the only taxon that grouped together with the 24 genome-sequenced powdery mildew fungi in a monophyletic clade. The close phylogenetic relationship between the Erysiphaceae and Arachnopeziza was revealed earlier by a phylogenomic study of the Leotiomycetes. Further analyses of powdery mildew and Arachnopeziza genomes may discover signatures of the evolutionary processes that have led to obligate biotrophy from a saprobic way of life. A separate phylogeny was produced using the 18S, 5.8S, and 28S nrDNA sequences of the same set of powdery mildew specimens and compared to the genome-scale phylogeny. The nrDNA phylogeny was largely congruent to the phylogeny produced using 751 orthologs. This part of the study has revealed multiple contamination and other quality issues in some powdery mildew genomes. We recommend that the presence of 28S, internal transcribed spacer (ITS), and 18S nrDNA sequences in powdery mildew WGS datasets that are identical to those determined by Sanger sequencing should be used to assess the quality of assemblies, in addition to the commonly used Benchmarking Universal Single-Copy Orthologs (BUSCO) values.

Funder

Deutsche Forschungsgemeinschaft

Deutscher Akademischer Austauschdienst

University of Southern Queensland

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference145 articles.

1. Fungi associated with decomposing deadwood.;Baldrian;Fungal Ecol.,2016

2. Rumble in the effector jungle: candidate effector proteins in interactions of plants with powdery mildew and rust fungi.;Barsoum;Crit. Rev. Plant Sci.,2019

3. Dating the evolutionary radiation of the true fungi.;Berbee;Can. J. Bot.,1993

4. Fungal molecular evolution: gene trees and geologic time;Berbee;The Mycota VII. Part B, Systematics and Evolution,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3