Genetic and Phenotypic Diversity of Morganella morganii Isolated From Cheese

Author:

Ryser Lorenz Timo,Arias-Roth Emmanuelle,Perreten Vincent,Irmler Stefan,Bruggmann Rémy

Abstract

The bacterium Morganella morganii can produce the biogenic amines (BA) cadaverine, putrescine, and histamine in vitro and is responsible for high histamine concentrations in fish products. These BA can have toxic effects upon ingestion and are undesired in food. The purpose of this study was to characterize the phenotype and genotype of 11 M. morganii isolated from cheese in regard to the BA formation. In addition, we investigated the phylogeny, trehalose fermentation ability, and antibiotic resistance of the cheese isolates. To do so, we sequenced their genomes using both long and short read technologies. Due to the presence of the trehalose operon and the ability to ferment trehalose, the cheese isolates can be assigned to the subsp. sibonii. Comparative genomics with public available M. morganii genomes shows that the genomes of the cheese isolates cluster together with other subsp. sibonii genomes. All genomes between subsp. morganii and subsp. sibonii are separated by an average nucleotide identity (ANI) of less than 95.0%. Therefore, the subspecies could represent two distinct species. Nine of the strains decarboxylated lysine yielding cadaverine in vitro. This metabolic activity is linked to a previously unknown gene cluster comprising genes encoding a lysine-tRNA ligase (lysS), an HTH-transcriptional regulator (argP), a cadaverine-lysine antiporter (cadB), and a lysine decarboxylase (cadA). The formation of putrescine is linked to the speF gene encoding an ornithine decarboxylase. The gene is disrupted in five strains by an insertion sequence, and these strains only exhibit a weak putrescine production. Antimicrobial susceptibility profiling revealed that all cheese strains are resistant to tetracycline, chloramphenicol, tigecycline, colistin, and ampicillin. These phenotypes, except for colistin which is intrinsic, could be linked to antimicrobial resistance genes located on the chromosome.

Funder

Innosuisse - Schweizerische Agentur für Innovationsförderung

Kanton Bern

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3