Author:
Agrinier Anne-Laure,Pilon Geneviève,Marette André
Abstract
In vitro gut models allow for the study of the impact of molecules on human gut microbiota composition and function without the implication of the host. However, current models, such as the Simulator of Human Intestinal Microbial Ecosystem (SHIME®), are expensive, time-consuming, and require specialized personnel. Homemade in vitro models that lessen these issues have limited evidence of their humanlike functionality. In this study, we present the development of a low-cost and easy-to-use bioreactor with the proven functionality of human microbiota. In our model, we evaluated the capability of replicating human gut microbiota growth and the response of the human bacterial community to a prebiotic, resistant starch, particularly resistant starch type 2 (RS2). Our bioreactor produced an environment that was stable for pH, temperature, and anaerobic conditions. The bioreactor consistently cultivated bacterial communities over a 48 h time period, replicating the composition of the gut microbiota and the associated metabolite production response to RS2, in line with prior human studies. In response to the RS2 prebiotic, we observed an increase in Bifidobacterium adolescentis and Bifidobacterium faecale and an increase in the production of the short-chain fatty acids such as acetate, propionate, and isobutyrate. Taken together, these data demonstrate that our low-cost and user-friendly prototype bioreactor model provides a favorable environment for the growth of human gut microbiota and can mimic its response to a prebiotic.