RpoZ regulates 2,4-DAPG production and quorum sensing system in Pseudomonas fluorescens 2P24

Author:

Wei Yarui,Dong Baozhu,Wu Xiaogang,Zhao Mingmin,Wang Dong,Li Na,Zhang Qian,Zhang Liqun,Zhou Hongyou

Abstract

IntroductionPseudomonas fluorescens 2P24 was isolated from soil of natural decay associated with wheat take-all and it can effectively control soil-borne diseases caused by a variety of plant pathogens. 2,4-diacetylphloroglucinol (2,4-DAPG), is produced by P. fluorescens 2P24 and plays an important role in the prevention and control of plant diseases. To understand the resistant mechanism, in this study, we conducted experiments to explore the regulation role of rpoZ in the synthesis of the antibiotic 2,4-DAPG and regulation of QS system.MethodsA random mini-Tn5 mutagenesis procedure was used to screen regulators for phlA transcription in stain PM901, which containing a phlA∷lacZ transcriptional fusion reporter plasmid. We identified 12 insertion mutants could significantly change phlA gene expression. By analyzing the amino acid sequences of the interrupted gene, we obtained a mutant strain Aa4-29 destroyed the rpoZ gene, which encodes the omiga subunit. We constructed the plasmid of rpoZ mutant (pBBR-△rpoZ) transformed into competent cells of P. fluorescens 2P24 by electro-transformation assay. The strains of P. fluorescens 2P24/pBBR, 2P24-△rpoZ/pBBR, 2P24-△rpoZ/pBBR-rpoZ were used to evaluate the regulation role of rpoZ in 2,4-DAPG production and quorum sensing system.ResultsAccording to β-galactosidase activity, we found that rpoZ positively regulated the expression of phlA (a synthesis gene of 2,4-DAPG) and PcoI (a synthesis gene of PcoI/PcoR QS signal system) at the transcriptional level. The production of 2,4-DAPG antibiotic and signal molecule AHL was influenced by rpoZ. Further, rpoZ was involved in regulating rsmA expression. RpoZ also has a certain regulatory effect on rpoS transcription, but no effect on the transcription of phlF, emhABC and emhR. According to the biocontrol assay, P. fluorescens 2P24 strains with rpoZ showed obvious antagonism ability against the Rhizoctonia solani in cotton, while the mutant strain of rpoZ lost the biocontrol effect. RpoZ had a significant effect on the swimming and biofilm formation in P. fluorescens 2P24.ConclusionOur data showed that rpoZ was an important regulator of QS system, 2,4-DAPG in P. fluorescens 2P24. This may imply that P. fluorescens 2P24 has evolved different regulatory features to adapt to different environmental threats.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3