Effect of fertilization combination on cucumber quality and soil microbial community

Author:

Wang Mei,Xu Yu,Ni Haiping,Ren Shiai,Li Ni,Wu Yuxia,Yang Yan,Liu Yumin,Liu Zongzheng,Liu Yingchun,Shi Jing,Zhang Youming,Jiang Lihua,Tu Qiang

Abstract

Due to the lack of scientific guidance on the usage of fertilizer, the overuse of chemical and organic fertilizer is commonly witnessed all over the world, which causes soil degradation and leads to environmental pollution. The effect of fertilizer strategies on soil properties, cucumber nutrients, and microbial community was investigated in this study with the aim to explore an optimized and enhanced fertilizer strategy. There were five fertilizer strategies conducted including CK (no fertilizer), M (cow dung manure only), NPK (chemical fertilizer only), NPKM (chemical fertilizer combined with manure), and DNPKM (30%-reducing chemical fertilizer combined with manure). It was found that different fertilizer strategies significantly affected the soil organic matter and nutrient levels and cucumber production and nutrient contents of the experimental field. Different fertilizer strategies showed dramatic effects on the alpha- and beta-diversity of soil microbial communities. Moreover, NPKM and DNPKM groups could significantly improve the bacterial abundance and fungal diversity. In addition, the structure of microbial communities was significantly changed in the presence of manure, chemical fertilizer, and their combination. Optimized combination of NPK with M improved the abundance of aerobic, biofilm formation-related, and Gram-negative bacteria and suppressed the anaerobic and Gram-positive bacteria. The presence of saprotrophs fungi was enhanced by all fertilizer strategies, especially the plethora of Gymnoascus. The combination of manure with chemical fertilizer could improve the availability of nutrients, and therefore reduce the adverse effects and potential risks induced by excessive fertilizer application. In conclusion, the new fertilization approach can not only meet the growth requirements of cucumber after reduced fertilization, but also protect soil health, which provides a new candidate for the eco-friendly technology to satisfy the topic of carbon neutrality.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3