Structural genome variants of Pseudomonas aeruginosa clone C and PA14 strains

Author:

Klockgether Jens,Pust Marie-Madlen,Davenport Colin F.,Bunk Boyke,Spröer Cathrin,Overmann Jörg,Tümmler Burkhard

Abstract

Plasticity of Pseudomonas aeruginosa chromosomes is mainly driven by an extended accessory genome that is shaped by insertion and deletion events. Further modification of the genome composition can be induced by chromosomal inversion events which lead to relocation of genes in the affected genomic DNA segments, modify the otherwise highly conserved core genome synteny and could even alter the location of the replication terminus. Although the genome of the first sequenced strain, PAO1, displayed such a large genomic inversion, knowledge on such recombination events in the P. aeruginosa population is limited. Several large inversions had been discovered in the late 1990s in cystic fibrosis isolates of the major clonal lineage C by physical genome mapping, and subsequent work on these examples led to the characterization of the DNA at the recombination breakpoints and a presumed recombination mechanism. Since then, the topic was barely addressed in spite of the compilation of thousands of P. aeruginosa genome sequences that are deposited in databases. Due to the use of second-generation sequencing, genome contig assembly had usually followed synteny blueprints provided by the existing reference genome sequences. Inversion detection was not feasible by these approaches, as the respective read lengths did not allow reliable resolution of sequence repeats that are typically found at the borders of inverted segments. In this study, we applied PacBio and MinION long-read sequencing to isolates of the mentioned clone C collection. Confirmation of inversions predicted from the physical mapping data demonstrated that unbiased sequence assembly of such read datasets allows the detection of genomic inversions and the resolution of the recombination breakpoint regions. Additional long-read sequencing of representatives of the other major clonal lineage, PA14, revealed large inversions in several isolates, from cystic fibrosis origin as well as from other sources. These findings indicated that inversion events are not restricted to strains from chronic infection background, but could be widespread in the P. aeruginosa population and contribute to genome plasticity. Moreover, the monitored examples emphasized the role of small mobile DNA units, such as IS elements or transposons, and accessory DNA elements in the inversion-related recombination processes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference42 articles.

1. BLAST+: architecture and applications.;Camacho;BMC Bioinform.,2009

2. NCBI BLAST+ integrated into Galaxy.;Cock;GigaScience,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3