Physiological, Genomic and Transcriptomic Analyses Reveal the Adaptation Mechanisms of Acidiella bohemica to Extreme Acid Mine Drainage Environments

Author:

Ou Shu-ning,Liang Jie-Liang,Jiang Xiao-min,Liao Bin,Jia Pu,Shu Wen-sheng,Li Jin-tian

Abstract

Fungi in acid mine drainage (AMD) environments are of great concern due to their potentials of decomposing organic carbon, absorbing heavy metals and reducing AMD acidity. Based on morphological analysis and ITS/18S high-throughput sequencing technology, previous studies have provided deep insights into the diversity and community composition of fungi in AMD environments. However, knowledge about physiology, metabolic potential and transcriptome profiles of fungi inhabiting AMD environments is still scarce. Here, we reported the physiological, genomic, and transcriptomic characterization of Acidiella bohemica SYSU C17045 to improve our understanding of the physiological, genomic, and transcriptomic mechanisms underlying fungal adaptation to AMD environments. A. bohemica was isolated from an AMD environment, which has been proved to be an acidophilic fungus in this study. The surface of A. bohemica cultured in AMD solutions was covered with a large number of minerals such as jarosite. We thus inferred that the A. bohemica might have the potential of biologically induced mineralization. Taking advantage of PacBio single-molecule real-time sequencing, we obtained the high-quality genome sequences of A. bohemica (50 Mbp). To our knowledge, this was the first attempt to employ a third-generation sequencing technology to explore the genomic traits of fungi isolated from AMD environments. Moreover, our transcriptomic analysis revealed that a series of genes in the A. bohemica genome were related to its metabolic pathways of C, N, S, and Fe as well as its adaptation mechanisms, including the response to acid stress and the resistance to heavy metals. Overall, our physiological, genomic, and transcriptomic data provide a foundation for understanding the metabolic potential and adaptation mechanisms of fungi in AMD environments.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3