Effects of the pyrE deletion mutant from Bacillus thuringiensis on gut microbiota and immune response of Spodoptera exigua

Author:

Zhao Dan,Wu Han,Li Yazi,Wang Qian,Ji Yujie,Guo Xiaochang,Guo Wei

Abstract

The gut microbiota is essential for the growth and development of insects, and the intestinal immune system plays a critical role in regulating the homeostasis of intestinal microorganisms and their interactions with pathogenic bacteria. Infection with Bacillus thuringiensis (Bt) can disrupt the gut microbiota of insects, but the regulatory factors governing the interaction between Bt and gut bacteria are not well understood. Uracil secreted by exogenous pathogenic bacteria can activate DUOX-mediated reactive oxygen species (ROS) production, which helps maintain intestinal microbial homeostasis and immune balance. To elucidate the regulatory genes involved in the interaction between Bt and gut microbiota, we investigate the effects of uracil derived from Bt on gut microbiota, and host immunity using a uracil deficient Bt strain (Bt GS57△pyrE) obtained by homologous recombination. We analyze the biological characteristics of the uracil deficient strain and found that the deletion of uracil in Bt GS57 strain changed the diversity of gut bacteria in Spodoptera exigua, as investigated using Illumina HiSeq sequencing. Furthermore, qRT-PCR analysis showed that compared with Bt GS57 (control), the expression of the SeDuox gene and the level of ROS were significantly decreased after feeding with Bt GS57△pyrE. Adding uracil to Bt GS57△pyrE restored the expression level of DUOX and ROS to a higher level. Additionally, we observed that PGRP-SA, attacin, defensin and ceropin genes were significant different in the midgut of S. exigua infected by Bt GS57 and Bt GS57△pyrE, with a trend of increasing first and then decreasing. These results suggest that uracil regulates and activates the DUOX-ROS system, affects the expression of antimicrobial peptide genes, and disturb intestinal microbial homeostasis. We preliminarily speculate that uracil is a key factor in the interaction between Bt and gut microbiota, and these findings provide a theoretical basis for clarifying the interaction between Bt, host, and intestinal microorganisms, as well as for gaining new insights into the insecticidal mechanism of B. thuringiensis in insects.

Funder

earmarked fund for Modern Agro-industry Technology Research System

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3