Tracking the microbial communities from the farm to the processing facility of a washed-rind cheese operation

Author:

Wilson Tara,Siddiqi Myra,Xi Yueqi,LaPointe Gisèle

Abstract

Milk residue and the accompanying biofilm accumulation in milking systems can compromise the microbial quality of milk and the downstream processes of cheese production. Over a six-month study, the microbial ecosystems of milk (n = 24), tap water (n = 24) and environmental swabs (n = 384) were cultured by plating decimal dilutions to obtain viable counts of total aerobic mesophilic lactose-utilizing bacteria (lactose-M17), lactic acid bacteria (MRS), yeasts and molds (Yeast, Glucose, Chloramphenicol (YGC) medium). Viable aerobic lactose-M17 plate counts of milk remained well below 4.7 log CFU/ml over five of the months, except for 1 week in November where milk at the facility exceeded 5 log CFU/ml. Swab samples of the farm milking equipment showed consistent viable counts after sanitation, while the bulk tank swabs contained the lowest counts. Viable counts from swabs of the facility were generally below the detection limit in the majority of samples with occasional residual contamination on some food contact surfaces. Extracted DNA was amplified using primers targeting the V3–V4 region of the 16S rRNA gene, and the amplicons were sequenced by MiSeq to determine the shared microbiota between the farm and the processing facility (8 genera). Culture independent analysis of bacterial taxa in milk, water and residual contamination after sanitation with swab samples revealed the shared and distinct microbiota between the sample types of both facilities. Amplicon sequence variants (ASVs) of the V3–V4 region of the 16S rRNA gene revealed that the microbiota of milk samples had lower diversity than water or environmental swabs (279 ASVs compared to 3,444 in water and 8,747 in environmental swabs). Brevibacterium and Yaniella (both Actinomycetota) were observed in all sampling types. Further studies will include whole genome sequencing of Brevibacterium spp. isolates to determine their functionality and diversity within the system.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3