Enhanced Biocontrol of Cucumber Fusarium Wilt by Combined Application of New Antagonistic Bacteria Bacillus amyloliquefaciens B2 and Phenolic Acid-Degrading Fungus Pleurotus ostreatus P5

Author:

Wang Hongwei,Cai Xiao-Yu,Xu Man,Tian Feng

Abstract

Continuous monoculture of cucumber (Cucumis sativus L.) typically leads to the frequent incidence of Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (FOC). As potent allelochemicals, phenolic acids are believed to be associated with soilborne diseases. This study aimed to investigate the effect of single or co-inoculation of antagonistic bacteria Bacillus amyloliquefaciens B2 and phenolic acid-degrading fungus Pleurotus ostreatus P5 on the suppression of cucumber Fusarium wilt. The strain B2 was identified as B. amyloliquefaciens based on biochemical, physiological, and 16S rDNA and gyrB gene sequence analyses. Strain B2 showed indole-3-acetic acid (IAA) and siderophore production and phosphate solubilization in in vitro assays. Scanning electron microscope (SEM) imaging showed the ability of strain B2 to adhere to the root surface of cucumber. P. ostreatus P5 could effectively degrade mixed phenolic acids as its sole source of carbon and energy for growth in liquid medium. In a pot experiment, four treatments were established as follows: (1) CK, uninoculated control; (2) B2, inoculation of strain B2; (3) P5, inoculation of strain P5; and (4) B2 + P5, co-inoculation of strain B2 and strain P5. At the end of the 60-day pot experiment, the B2, P5, and B2 + P5 treatments significantly reduced disease incidence by 48.1, 22.2, and 63.0%, respectively, compared to the CK treatment (p < 0.05). All three inoculation treatments significantly increased the growth of cucumber seedlings and suppressed the FOC population compared to the control (p < 0.05). High-performance liquid chromatography (HPLC) analysis showed that total phenolic acids were decreased by 18.9, 35.9, and 63.2% in the B2, P5, and B2 + P5 treatments, respectively. The results from this study suggest that combined application of B. amyloliquefaciens B2 and P. ostreatus P5 could be a promising strategy for suppressing Fusarium wilt and improving plant growth of cucumber seedlings under continuous cropping conditions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3