Microbial diversity and their extracellular enzyme activities among different soil particle sizes in mossy biocrust under N limitation in the southeastern Tengger Desert, China

Author:

Duan Xiaomin,Li Jiajia,He Wangping,Huang Jingjing,Xiong Wanxiang,Chi Shijia,Luo Siyuan,Liu Jianli,Zhang Xiu,Li Jingyu

Abstract

IntroductionMossy biocrust represents a stable stage in the succession of biological soil crust in arid and semi-arid areas, providing a microhabitat that maintains microbial diversity. However, the impact of mossy biocrust rhizoid soil and different particle sizes within the mossy biocrust layer and sublayer on microbial diversity and soil enzyme activities remains unclear.MethodsThis study utilized Illumina MiSeq sequencing and high-throughput fluorometric technique to assess the differences in microbial diversity and soil extracellular enzymes between mossy biocrust rhizoid soil and different particle sizes within the mossy biocrust sifting and sublayer soil.ResultsThe results revealed that the total organic carbon (TOC), total nitrogen (TN), ammonium (NH4+) and nitrate (NO3) in mossy biocrust rhizoid soil were the highest, with significantly higher TOC, TN, and total phosphorus (TP) in mossy biocrust sifting soil than those in mossy biocrust sublayer soil. Extracellular enzyme activities (EAAs) exhibited different responses to various soil particle sizes in mossy biocrust. Biocrust rhizoid soil (BRS) showed higher C-degrading enzyme activity and lower P-degrading enzyme activity, leading to a significant increase in enzyme C: P and N: P ratios. Mossy biocrust soils were all limited by microbial relative nitrogen while pronounced relative nitrogen limitation and microbial maximum relative carbon limitation in BRS. The diversity and richness of the bacterial community in the 0.2 mm mossy biocrust soil (BSS0.2) were notably lower than those in mossy biocrust sublayer, whereas the diversity and richness of the fungal community in the rhizoid soil were significantly higher than those in mossy biocrust sublayer. The predominant bacterial phyla in mossy biocrust were Actinobacteriota, Protebacteria, Chloroflexi, and Acidobacteriota, whereas in BSS0.2, the predominant bacterial phyla were Actinobacteriota, Protebacteria, and Cyanobacteria. Ascomycota and Basidiomycota were dominant phyla in mossy biocrust. The bacterial and fungal community species composition exhibited significant differences. The mean proportions of Actinobacteriota, Protebacteria, Chloroflexi, Acidobacteriota, Acidobacteria, Cyanobacteria, and Bacteroidota varied significantly between mossy biocrust rhizoid and different particle sizes of mossy biocrust sifting and sublayer soil (p < 0.05). Similarly, significant differences (p < 0.05) were observed in the mean proportions of Ascomycota, Basidiomycota, and Glomeromycota between mossy biocrust rhizoid and different particle sizes within the mossy biocrust sifting and sublayer soil. The complexity and connectivity of bacterial and fungal networks were higher in mossy biocrust rhizoid soil compared with different particle sizes within the mossy biocrust sifting and sublayer soil.DiscussionThese results offer valuable insights to enhance our understanding of the involvement of mossy biocrust in the biogeochemical cycle of desert ecosystems.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3