Stronger effects of simultaneous warming and precipitation increase than the individual factor on soil bacterial community composition and assembly processes in an alpine grassland

Author:

Wei Xiaoting,Han Bing,Wu Bo,Shao Xinqing,Qian Yongqiang

Abstract

Composition and traits of soil microbial communities that closely related to their ecological functions received extensive attention in the context of climate changes. We investigated the responses of soil bacterial community structure, traits, and functional genes to the individual warming, precipitation increases, and the combination of warming and precipitation increases in an alpine grassland in the Qinghai-Tibet Plateau that is experiencing warming and wetting climate change. Soil properties, plant diversity and biomass were measured, and the ecological processes and environmental factors driving bacterial community changes were further explored. Results indicated that the Shannon diversity of soil bacterial communities decreased significantly only under the combination treatment, which might due to the decreased plant diversity. Soil bacterial community composition was significantly correlated with soil pH, and was affected obviously by the combination treatment. At the taxonomic classification, the relative abundance of Xanthobacteraceae and Beijerinckiaceae increased 127.67 and 107.62%, while the relative abundance of Rubrobacteriaceae and Micromonosporaceae decreased 78.29 and 54.72% under the combination treatment. Functional genes related to nitrogen and phosphorus transformation were enhanced in the combination treatment. Furthermore, weighted mean ribosomal operon copy numbers that positively correlated with plant aboveground biomass increased remarkably in the combination treatment, indicating a trend of life-history strategies shift from oligotrophic to copiotrophic. Stochastic processes dominated soil bacterial community, and the proportion of stochasticity increased under the combination treatment. Our study highlights the significant effects of simultaneous warming and precipitation increase on soil bacterial community.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3