Effect of Clostridium butyricum Supplementation on in vitro Rumen Fermentation and Microbiota With High Grain Substrate Varying With Media pH Levels

Author:

Jiao Peixin,Wang Ziwei,Wang Xin,Zuo Yanan,Yang Yuqing,Hu Guanghui,Lu Changming,Xie Xiaolai,Wang Li,Yang Wenzhu

Abstract

Clostridium butyricum (C. butyricum) can survive at low pH, and it has been widely used as an alternative to antibiotics for the improvement of feed efficiency and animal health in monogastrics. A recent study suggested that the improved ruminal fermentation with supplementing C. butyricum is may be associated with increasing the abundance of rumen microbiota in Holstein heifers, as ruminal pH plays a key role in rumen microbiota and the probiotics are often active in a dose-dependent manner. The objective of this study was to determine the effects of increasing the doses of C. butyricum on gas production (GP) kinetics, dry matter disappearance (DMD), fermentation characteristics, and rumen microbiota using a high grain substrate in batch culture varying with media pH levels. The doses of C. butyricum were supplemented at 0 (control), 0.5 × 106, 1 × 106, and 2 × 106 CFU/bottle, respectively, at either media pH 6.0 or pH 6.6. The fermentation microbiota at 0 and 1 × 106 CFU/bottle were determined using the 16S rRNA high throughput sequencing technology. Overall, the GP, DMD, total volatile fatty acid (VFA) concentration, and the ratio of acetate:propionate were higher (P <0.01) at media pH 6.6 than at pH 6.0. However, there was interaction between pH × dose of C. butyricum for rate constant of GP (P = 0.01), average GP rate (P = 0.07), and volume of GP (P = 0.06); with the increase in C. butyricum supplementation, the GP kinetics were not changed at media pH 6.0, but the volume (P = 0.02), rate of GP (P = 0.01), and average GP rate (P = 0.01) were quadratically changed at media pH 6.6. The DMD was not affected by increasing the supplementation of C. butyricum. The molar proportions of propionate (P <0.09), butyrate (P <0.06), and NH3-N concentration (P = 0.02) were quadratically changed with increasing supplementation of C. butyricum regardless of media pH levels. The interactions between media pH level and dose of C. butyricum supplementation were noticed for alpha diversity indexes of Shannon (P = 0.02) and Evenness (P = 0.04). The alpha diversity indexes increased (P <0.05) except for Chao1 with supplementation of C. butyricum. The unweighted uniFrac analysis showed that the group of control at media pH 6.0 and control at media pH 6.6, and supplementation of C. butyricum and control at media pH 6.0 clustered separately from each other. At the phylum level, relative abundance (RA) of Bacteroidota was lower (P <0.01) and Firmicutes was higher (P <0.01) at media pH 6.6 than pH 6.0. Moreover, RA of Proteobacteria decreased (P <0.05) with supplemented C. butyricum at either media pH 6.6 or pH 6.0. At media pH 6.6, RA of Rikenellaceae_RC9_gut_group and Prevotella were decreased, and CAG-352 was increased (at genus level) compared to pH 6.0. Supplementation of C. butyricum decreased RA of Rikenellaceae_RC9_gut_group and increased CAG-352 at media pH 6.0. It could hence be concluded that manipulating media pH level and supplementation of C. butyricum effectively modulated in vitro rumen fermentation characteristics and microbiota but in a dose depending manner of C. butyricum addition.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3