Suppression of AMF accelerates N2O emission by altering soil bacterial community and genes abundance under varied precipitation conditions in a semiarid grassland

Author:

Li Junqin,Meng Bo,Yang Xuechen,Cui Nan,Zhao Tianhang,Chai Hua,Zhang Tao,Sun Wei

Abstract

Nitrous oxide (N2O) is one of the most important greenhouse gases contributing to global climate warming. Recently, studies have shown that arbuscular mycorrhizal fungi (AMF) could reduce N2O emissions in terrestrial ecosystems; however, the microbial mechanisms of how AMF reduces N2O emissions under climate change are still not well understood. We tested the influence of AMF on N2O emissions by setting up a gradient of precipitation intensity (+50%, +30%, ambient (0%), −30%, −50%, and −70%) and manipulating the presence or exclusion of AMF hyphae in a semiarid grassland located in northeast China. Our results showed that N2O fluxes dramatically declined with the decrease in precipitation gradient during the peak growing season (June–August) in both 2019 and 2020. There was a significantly positive correlation between soil water content and N2O fluxes. Interestingly, N2O fluxes significantly decreased when AMF were present compared to when they were absent under all precipitation conditions. The contribution of AMF to mitigate N2O emission increased gradually with decreasing precipitation magnitudes, but no contribution in the severe drought (−70%). AMF significantly reduced the soil’s available nitrogen concentration and altered the composition of the soil bacteria community including those associated with N2O production. Hyphal length density was negatively correlated with the copy numbers of key genes for N2O production (nirK and nirS) and positively correlated with the copy numbers of key genes for N2O consumption (nosZ). Our results highlight that AMF would reduce the soil N2O emission under precipitation variability in a temperate grassland except for extreme drought.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3