Automating methods for estimating metabolite volatility

Author:

Meredith Laura K.,Ledford S. Marshall,Riemer Kristina,Geffre Parker,Graves Kelsey,Honeker Linnea K.,LeBauer David,Tfaily Malak M.,Krechmer Jordan

Abstract

The volatility of metabolites can influence their biological roles and inform optimal methods for their detection. Yet, volatility information is not readily available for the large number of described metabolites, limiting the exploration of volatility as a fundamental trait of metabolites. Here, we adapted methods to estimate vapor pressure from the functional group composition of individual molecules (SIMPOL.1) to predict the gas-phase partitioning of compounds in different environments. We implemented these methods in a new open pipeline called volcalc that uses chemoinformatic tools to automate these volatility estimates for all metabolites in an extensive and continuously updated pathway database: the Kyoto Encyclopedia of Genes and Genomes (KEGG) that connects metabolites, organisms, and reactions. We first benchmark the automated pipeline against a manually curated data set and show that the same category of volatility (e.g., nonvolatile, low, moderate, high) is predicted for 93% of compounds. We then demonstrate how volcalc might be used to generate and test hypotheses about the role of volatility in biological systems and organisms. Specifically, we estimate that 3.4 and 26.6% of compounds in KEGG have high volatility depending on the environment (soil vs. clean atmosphere, respectively) and that a core set of volatiles is shared among all domains of life (30%) with the largest proportion of kingdom-specific volatiles identified in bacteria. With volcalc, we lay a foundation for uncovering the role of the volatilome using an approach that is easily integrated with other bioinformatic pipelines and can be continually refined to consider additional dimensions to volatility. The volcalc package is an accessible tool to help design and test hypotheses on volatile metabolites and their unique roles in biological systems.

Funder

Directorate for Biological Sciences

Division of Earth Sciences

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Volatile Organic Compound Metabolism on Early Earth;Journal of Molecular Evolution;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3