The impact of fertilization on ammonia-oxidizing bacteria and comammox Nitrospira communities and the subsequent effect on N2O emission and maize yield in a semi-arid region

Author:

Fudjoe Setor Kwami,Li Lingling,Anwar Sumera,Shi Shangli,Xie Junhong,Yeboah Frederick Kwame,Wang Linlin

Abstract

The control of nitrous oxide (N2O) emissions through nitrification and the optimization of maize yield are important in agricultural systems. However, within the semi-arid region, the impact of fertilization on the function of nitrification communities and its connection with N2O emissions in the rhizosphere soil is still unclear. Our study investigates the influence of fertilization treatments on the communities of ammonia-oxidizing bacteria (AOB) and the complete ammonia oxidizers of the Nitrospira known as comammox (CAOB) in a maize agroecosystem. Nitrous oxide production, potential nitrification activity (PNA), maize yield, and nitrogen use efficiency (NUE) were determined for the same samples. The fertilizer treatments included a control group without fertilization (NA), inorganic fertilizer (CF), organic fertilizer (SM), combined inorganic and organic fertilizer (SC), and maize straw (MS). The SC treatment indicated a lower cumulative N2O emission than the CF treatment in the 2020 and 2021 cropping seasons. The AOB community under the CF, MS, and SM treatments was predominantly composed of Nitrosospira cluster 3b, while the SC treatment was associated with the comammox Nitrospira clade A.1 lineage, related to key species such as Ca. Nitrospira inopinata and Ca. Nitrospira nitrificans. Network analysis demonstrated a positive potential for competitive interaction between hub taxonomy and distinct keystone taxa among AOB and comammox Nitrospira nitrifiers. The structural equation model further revealed a significant positive association between AOB nitrifiers and N2O emission, PNA, soil pH, SOC, NO3-N, and DON under organic fertilization. The keystone taxa in the comammox Nitrospira nitrifier and network Module II exhibited a positive correlation with maize productivity and NUE, likely due to their functional activities stimulated by the SC treatment. It is noteworthy that the AOB community played a more significant role in driving nitrification compared to the composition of comammox Nitrospira. Collectively, combined inorganic and organic fertilizer (SC) treatment exhibits high potential for reducing N2O emissions, enhancing maize productivity, increasing NUE, and increasing the sustainability of the nitrogen dynamics of maize agroecosystems in the semi-arid Loess Plateau.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3