Effects of Tree Composition and Soil Depth on Structure and Functionality of Belowground Microbial Communities in Temperate European Forests

Author:

Prada-Salcedo Luis Daniel,Prada-Salcedo Juan Pablo,Heintz-Buschart Anna,Buscot François,Goldmann Kezia

Abstract

Depending on their tree species composition, forests recruit different soil microbial communities. Likewise, the vertical nutrient gradient along soil profiles impacts these communities and their activities. In forest soils, bacteria and fungi commonly compete, coexist, and interact, which is challenging for understanding the complex mechanisms behind microbial structuring. Using amplicon sequencing, we analyzed bacterial and fungal diversity in relation to forest composition and soil depth. Moreover, employing random forest models, we identified microbial indicator taxa of forest plots composed of either deciduous or evergreen trees, or their mixtures, as well as of three soil depths. We expected that forest composition and soil depth affect bacterial and fungal diversity and community structure differently. Indeed, relative abundances of microbial communities changed more across soil depths than in relation to forest composition. The microbial Shannon diversity was particularly affected by soil depth and by the proportion of evergreen trees. Our results also reflected that bacterial communities are primarily shaped by soil depth, while fungi were influenced by forest tree species composition. An increasing proportion of evergreen trees did not provoke differences in main bacterial metabolic functions, e.g., carbon fixation, degradation, or photosynthesis. However, significant responses related to specialized bacterial metabolisms were detected. Saprotrophic, arbuscular mycorrhizal, and plant pathogenic fungi were related to the proportion of evergreen trees, particularly in topsoil. Prominent microbial indicator taxa in the deciduous forests were characterized to be r-strategists, whereas K-strategists dominated evergreen plots. Considering simultaneously forest composition and soil depth to unravel differences in microbial communities, metabolic pathways and functional guilds have the potential to enlighten mechanisms that maintain forest soil functionality and provide resistance against disturbances.

Funder

Helmholtz-Zentrum für Umweltforschung

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3