Organic matter degradation and bacterial communities in surface sediment influenced by Procambarus clarkia

Author:

Hou Yiran,Jia Rui,Ji Peng,Li Bing,Zhu Jian

Abstract

To alleviate excessive organic matter (OM) accumulation in sediments and reduce the risk of endogenous water pollution and eutrophication in aquaculture ponds, an 84-day experiment investigated the effect of the red swamp crayfish Procambarus clarkii on the OM degradation and bacterial communities in sediments. The experiment established two groups, P. clarkia treatment and control (represented as PG and CG, respectively), with three replicates for each group. At the end of experiment, the total, light fraction, and heavy fraction organic matter concentrations in the sediment of the PG group were significantly lower than those of the CG group. Significantly higher oxidation–reduction potential (ORP) and more extensively degraded OM, indicated by fatty acids, were observed in the PG group. Compared to the CG group, the average OM removal efficiency induced by crayfish in the PG group was 15.24%. Using 16S ribosomal RNA (rRNA) high-throughput sequencing, we investigated the differences in benthic bacterial communities between the PG and CG groups. Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that Nitrospirae, Nitrospira, Alphaproteobacteria, OLB14, Nitrospirales, Rhodobacterales, Rhizobiales, Micrococcales, Nitrospiraceae, Rhodobacteraceae, Nitrospira, Rhodobacter, Thermomonas, and Denitratisoma were significantly enriched in the PG group. Four significantly different functional groups related to OM degradation were determined between the PG and CG groups according to the functional annotation of procaryotic taxa (FAPROTAX) analysis. These four functional groups, aerobic chemoheterotrophy, manganese oxidation, dark iron oxidation, and dark sulfide oxidation, showed significantly higher relative abundances in the PG group. Overall, P. clarkia effectively increased the ORP values of sediments to provide favorable conditions for OM degradation and changed the composition and function of bacterial communities to improve bacterial abilities for OM decomposition, thereby promoting OM degradation in the sediment.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference116 articles.

1. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures;Aller,1988

2. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation;Aller;Chem. Geol.,1994

3. Transport and reactions in the bioirrigated zone;Aller,2001

4. The influence of Procambarus clarkii (Cambaridae, Decapoda) on water quality and sediment characteristics in a Spanish floodplain wetland;Angeler;Hydrobiologia,2001

5. Sorption characteristics of phenanthrene by different soil organic matter fractions;Bao;China Environ. Sci.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3