Short-Term Grazing Exclusion Alters Soil Bacterial Co-occurrence Patterns Rather Than Community Diversity or Composition in Temperate Grasslands

Author:

Wang Fangfang,Li Zongming,Fu Bojie,Lü Yihe,Liu Guoping,Wang Dongbo,Wu Xing

Abstract

Grazing exclusion is one of the most common practices for degraded grassland restoration worldwide. Soil microorganisms are critical components in soil and play important roles in maintaining grassland ecosystem functions. However, the changes of soil bacterial community characteristics during grazing exclusion for different types of grassland remain unclear. In this study, the soil bacterial community diversity and composition as well as the co-occurrence patterns were investigated and compared between grazing exclusion (4 years) and the paired adjacent grazing sites for three types of temperate grasslands (desert steppe, typical steppe, and meadow steppe) in the Hulunbuir grassland of Inner Mongolia. Our results showed that short-term grazing exclusion decreased the complexity and connectivity of bacterial co-occurrence patterns while increasing the network modules in three types of temperate grasslands. The effects of grazing exclusion on soil bacterial α-diversity and composition were not significant in typical steppe and meadow steppe. However, short-term grazing exclusion significantly altered the community composition in desert steppe, indicating that the soil bacteria communities in desert steppe could respond faster than those in other two types of steppes. In addition, the composition of bacterial community is predominantly affected by soil chemical properties, such as soil total carbon and pH, instead of spatial distance. These results indicated that short-term grazing exclusion altered the soil bacterial co-occurrence patterns rather than community diversity or composition in three types of temperate grasslands. Moreover, our study suggested that soil bacterial co-occurrence patterns were more sensitive to grazing exclusion, and the restoration of soil bacterial community might need a long term (>4 years) in our study area.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3