Subsurface biogeochemical cycling of nitrogen in the actively serpentinizing Samail Ophiolite, Oman

Author:

Rempfert Kaitlin R.,Nothaft Daniel B.,Kraus Emily A.,Asamoto Ciara K.,Evans R. Dave,Spear John R.,Matter Juerg M.,Kopf Sebastian H.,Templeton Alexis S.

Abstract

Nitrogen (N) is an essential element for life. N compounds such as ammonium (NH4+) may act as electron donors, while nitrate (NO3-) and nitrite (NO2-) may serve as electron acceptors to support energy metabolism. However, little is known regarding the availability and forms of N in subsurface ecosystems, particularly in serpentinite-hosted settings where hydrogen (H2) generated through water–rock reactions promotes habitable conditions for microbial life. Here, we analyzed N and oxygen (O) isotope composition to investigate the source, abundance, and cycling of N species within the Samail Ophiolite of Oman. The dominant dissolved N species was dependent on the fluid type, with Mg2+-HCO3- type fluids comprised mostly of NO3-, and Ca2+-OH fluids comprised primarily of ammonia (NH3). We infer that fixed N is introduced to the serpentinite aquifer as NO3-. High concentrations of NO3- (>100 μM) with a relict meteoric oxygen isotopic composition (δ18O ~ 22‰, Δ17O ~ 6‰) were observed in shallow aquifer fluids, indicative of NO3- sourced from atmospheric deposition (rainwater NO3-: δ18O of 53.7‰, Δ17O of 16.8‰) mixed with NO3- produced in situ through nitrification (estimated endmember δ18O and Δ17O of ~0‰). Conversely, highly reacted hyperalkaline fluids had high concentrations of NH3 (>100 μM) with little NO3- detectable. We interpret that NH3 in hyperalkaline fluids is a product of NO3- reduction. The proportionality of the O and N isotope fractionation (18ε / 15ε) measured in Samail Ophiolite NO3- was close to unity (18ε / 15ε ~ 1), which is consistent with dissimilatory NO3- reduction with a membrane-bound reductase (NarG); however, abiotic reduction processes may also be occurring. The presence of genes commonly involved in N reduction processes (narG, napA, nrfA) in the metagenomes of biomass sourced from aquifer fluids supports potential biological involvement in the consumption of NO3-. Production of NH4+ as the end-product of NO3- reduction via dissimilatory nitrate reduction to ammonium (DNRA) could retain N in the subsurface and fuel nitrification in the oxygenated near surface. Elevated bioavailable N in all sampled fluids indicates that N is not likely limiting as a nutrient in serpentinites of the Samail Ophiolite.

Funder

NASA Astrobiology Institute

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3