Fluid inclusion, zircon U-Pb geochronology, and O-S isotopic constraints on the origin and evolution of ore-forming fluids of the tashvir and varmazyar epithermal base metal deposits, NW Iran

Author:

Kouhestani Hossein,Mokhtari Mir Ali Asghar,Chang Zhaoshan,Qin Kezhang,Aghajani Marsa Soheila

Abstract

Tashvir and Varmazyar deposits are part of the epithermal ore system in the Tarom–Hashtjin Metallogenic Belt (THMB), NW Iran. In both deposits, epithermal veins are hosted by Eocene volcanic-volcaniclastic rocks of the Karaj Formation and are spatially associated with late Eocene granitoid intrusions. The ore assemblages consist of pyrite, chalcopyrite, chalcocite, galena, and sphalerite (Fe-poor), with lesser amounts of bornite and minor psilomelane and pyrolusite. Fluid inclusion measurements from the Tashvir and Varmazyar revealed 182–287 and 194–285°C formation temperatures and 2.7–7.9 and 2.6–6.4 wt.% NaCl equivalent salinities, respectively. The oxygen isotope data suggested that the mineralizing fluids originated dominantly from a magmatic fluid that mixed with meteoric waters. The sulfur isotope data indicated that the metal and sulfur sources were largely a mixture of magma and surrounding sedimentary rocks. LA-ICP–MS zircon U–Pb dating of the granitoid intrusion at Tashvir and Varmazyar, yielded a weighted mean age of 38.34–38.31 and 40.85 Ma, respectively, indicating that epithermal mineralization developed between 40.85 and 38.31 Ma. Our data indicated that fluid mixing along with some fluid boiling were the main drives for hydrothermal alteration and mineralization at Tashvir and Varmazyar. All these characteristics suggested an intermediate-sulfidation epithermal style of mineralization. The THMB is proposed to be prospective for precious and base metal epithermal mineralization. Considering the extensional tectonic setting, and lack of advanced argillic lithocaps and hypersaline fluid inclusions, the THMB possibly has less potential for economically important porphyry mineralization.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3